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Abstract: In this study, the magnetohydrodynamic flow of an incompressible, viscous electrically conducting fluid through a 

convergent-divergent channel in the presence of an oblique variable magnetic field to the flow with a case of suction and 

injection on the walls has been investigated. The velocity profiles, temperature profiles, the effects of injection and suction, 

time, induced magnetic field and the effects of varying various parameters on the flow have been investigated. The equations 

governing the MHD flow are solved by the collocation method and the results presented in graphs. The velocity, temperature, 

and magnetic induction increases with the increase in the suction parameter and decrease in the wedge angle while velocity, 

temperature, and magnetic induction reduce with the increase in the injection parameter. The velocity, temperature and 

magnetic induction increase with the increase in the Hartmann number. The results of this study will be useful information to 

the engineers to improve the performance and efficiency of machines in the industrial, environmental, aerospace, chemical, 

civil, mechanical and biomechanical engineering applications. 
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1. Introduction 

The problem of investigating incompressible Newtonian 

fluid flows and their characteristics between nonparallel 

walls has extensively generated much importance in recent 

years. In the recent past years, considerable efforts have been 

put to study the various models related to the Newtonian 

fluids and to consider the flow behavior of these fluids in 

converging and diverging channels. George Barker Jeffery 

and Georg Hamel were the first to study the incompressible 

viscous fluid flow between non-parallel walls or through 

convergent-divergent channels, known as the Jeffery-Hamel 

problem [1, 2]. The pioneers initially introduced this type of 

flow and managed to give it a celebrity occupying a primary 

place in the field of fluid dynamics, constituting a reliable 

mathematical formulation for many mechanical situations 

encouraging many scientists to conduct extensive research in 

recent years, because of their use in many industrial and 

natural areas. The classical Jeffery-Hamel problem was 

further studied to include the effects of external magnetic 

field in the conducting fluid. The magnetic field acts as a 

control parameter, along with the flow, the Reynolds number, 

and the angle of the walls [3]. Most scientific research 

problems such as Jeffery-Hamel flow and other problems in 

fluid mechanics are inherently nonlinear. A part from a 

limited number of these problems, most of them do not have 

analytical solutions, thus the nonlinear equations are solved 

using other methods [4]. Jeffery-Hamel flow with high 

magnetic field and Nanoparticle by reconstruction of 

variation iteration method (RVIM) was studied by [5]. They 

reduced the Navier-Stokes equation and Maxwell’s 

electromagnetism governing equations to nonlinear ordinary 

differential equations to model the problem. The flow field 

inside the divergent channel was studied with various values 

of Hartmann number and angle of channel. They matched 

their results with the exact solution obtained by Adomian’s 
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Decomposition Method (ADM) which were in agreement. 

Studies on MHD Flow of a Jeffery fluid in diverging and 

converging channels between oblique walls using 

conservation laws along with similarity transformations were 

done by researchers who demonstrated the effects of different 

parameters on the flow, [6]. They observed that magnetic 

field acts similar to a control parameter as it controls 

backflow for diverging channel and concluded that with high 

values of magnetic number M, flow separation can be 

controlled for diverging channels. Similarly, the flow of an 

incompressible viscous fluid in a converging and diverging 

channel was investigated by researchers and they made 

various conclusions from their research, [7]. For diverging 

channel, 0α >  the velocity decreases with the increase in 

angle α  and the influence of Reynold’s number Re and 

angle α  is same for diverging channel. They noted that the 

effect of angle α  is quite opposite for converging channel 

( α  < 0) to that for diverging channel and there is an increase 

in the velocity for converging channel with an increase in α . 

Also for converging channel, Reynold’s number Re resulted 

in an increase in the velocity which is opposite to that for the 

diverging channel. 

Analytical Investigation of MHD Jeffery–Hamel nanofluid 

flow in non-parallel walls in 2013 was carried out by 

Sheikholeslami who applied the Homotopy perturbation 

method (HPM) to investigate the effect of magnetic field on 

Cu-water nanofluid flow in non-parallel walls, [8]. The 

validity of HPM solutions was verified in their study by 

comparing their results with numerical results obtained using 

a fourth-order Runge–Kutta method. The results revealed that 

velocity in the boundary layer thickness decreased with the 

increase of the Reynolds number and nanoparticle volume 

fraction and increased with the increase in the Hartmann 

number. Mass and heat transfer analysis in an unsteady 

viscous MHD nanofluid flow through a channel with porous 

walls and medium in the presence of nanoparticles that were 

metallic were numerically studied and they discussed the two 

effective cases of thermal conductivity in their analysis 

through H-C model, [9]. They concluded that with the 

patronage of small values of permeability, Reynolds number 

and relaxation/ contraction parameter, wall contraction 

together with suction, flow turning is invigorated close to the 

wall where the boundary layer is shaped while on the other 

hand, when wall relaxation is coupled with injection, the 

flow adjacent to the porous walls decreased. A 

magnetohydrodynamic laminar steady two-dimensional 

viscous incompressible nanofluid flow from a source or sink 

between divergent-convergent channels in the presence of an 

external magnetic field vertically downward to the top wall 

was investigated by Alam who found that an increase in the 

channel semi angle leads to increase of fluid centre line 

velocity, an increase in the Hartmann number reduces the 

fluid flow in the channel centerline and produces the 

backward flow near the walls for both base fluid and 

nanofluid, the velocity increases as nanoparticles volume 

fraction increases along the centerline while increasing the 

volume fraction generates backward flow near the channel 

walls, [10]. 

In 2017, Nagler studied a Jeffery-Hamel (J-H) flow model 

of the non-Newtonian fluid type inside a convergent wedge 

(inclined walls) with wall friction. He discovered that the 

Newtonian normalized velocity reduces gradually with the 

tangential direction progress. Further, an increase in the 

friction coefficient leads to a reduction in the normalized 

Newtonian velocity profile values. He also noted that an 

increase in the Reynolds number causes a rise in the 

normalized velocity function values and for the small values 

of wedge semi-angle, [11]. His solutions are in agreement 

with the previous results obtained by other researchers. 

More recently, unsteady two-dimensional Jeffery-Hamel 

flow of an incompressible non-Newtonian fluid, with skin 

friction and nonlinear viscosity, flowing through a divergent 

conduit in the existence of a constant magnetic field applied 

in the direction perpendicular to fluid motion was studied by 

Ochieng who noted that the fluid velocity increases with 

increasing values of the Reynolds number and Hartmann 

number, [12]. The velocity, however, decreases with 

increasing values of the unsteadiness parameter, and it 

remains constant with increasing values of the Prandtl 

number and Eckert number. The fluid temperature increases 

with increasing values of the Prandtl number, Eckert number, 

Reynolds number, Hartmann number, and unsteadiness 

parameter. In this study, analysis of unsteady MHD Jeffrey 

Hamel flows in the presence of an inclined magnetic field 

between porous walls with injection/ suction is investigated 

and analyzed. The aim of this study is to determine the effect 

of various flow parameters and variables on the unsteady 

Jeffrey Hamel flow in the presence of an oblique magnetic 

field with suction/injection. 

2. Mathematical Modeling 

In this study, considered is the unsteady two-dimensional 

MHD Jeffrey Hamel flow of an electrically conducting 

viscous incompressible fluid from a source at the intersection 

between two porous walls with an injection case and a 

suction case in the presence of an oblique variable magnetic 

field, where the angle between the walls is 2α as shown in the 

figure. The rigid walls are known as divergent if α >0 and 

convergent if α < 0. We assume that the velocity is only 

along the radial direction and depends on r and θ so that u = 

(u (r, θ), 0). 

 

Figure 1. Geometry of the problem. 
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The boundary conditions and the initial conditions for the 

model are such that the angle between the walls, θ  is in the 

limits α θ α− ≤ ≤ . 

For θ α= − , 0ru = , 0u uθ = , wT T= , wC C=  

For 0θ = , ru u∞= , 0uθ = , T T∞= , C C∞=  

For θ α= , 0ru = , 0u uθ = , wT T= , wC C=  

0u  is the injection/suction velocity, T∞  and wT  are the 

free stream and wall temperatures respectively and wT T∞ >  

while C∞  and wC  are the free stream and wall 

concentrations respectively and wC C∞ < . 

3. Governing Equations 

The general continuity equation in the cylindrical 

coordinate system ( , , )r zθ  is given by 

( ) ( ) ( )1 1
0r zr u u u

t r r r z
θ

ρ ρ ρ ρ
θ

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

          (1) 

The motion equation in the cylindrical coordinate system 

along the r  and θ  directions are given by 

( )

2

2 2

2 2 2 2

1 1 2r

r r r r
r z

r r
r

ru

u uu u u u p
u u

t r r r z r

uu u
F

r r r r r z

θ θ

θ

ρ
θ

µ ρ
θθ

 
  
 

    
          

∂ ∂ ∂ ∂ ∂+ + − + = − +
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂∂ + − + +
∂ ∂ ∂∂ ∂

 (2) 

( ) 2 2

2 2 2 2

1

1 1 2

r
r z

r
ru

u u u u u u u p
u u

t r r r z r

u uu
F

r r r r r z

θ

θ θ θ θ θ θ

θ θ
θ

ρ
θ θ

µ ρ
θθ

 
 
 

   
           

∂ ∂ ∂ ∂ ∂+ + + + = − +
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂∂ + + + +
∂ ∂ ∂∂ ∂

 (3) 

The conservation of energy equation derived from the first 

law of thermodynamics in the cylindrical coordinate system 

is given by, 

2 2

2 2 2

1 1 T T
K +p r z

udT T T T T
C u u r

dt r r z r r r r z

θρ
θ θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + = + + Φ   ∂ ∂ ∂ ∂ ∂ ∂ ∂    
                                           (4) 

The equation of species concentration is based on the law 

of conservation of mass. 

2 2

2 2 2

1 1
r

r r

C C C C C C
u u D

t r r r
θ θ θ

 
+ + + + 

 

∂ ∂ ∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂ ∂ ∂

     (5) 

This is the induction equation in vector form which 

describes how the magnetic fields in a perfectly conducting 

fluid changes with time under the influence of a velocity V . 

( ) ( )21 1

e et µ σ µ
  

∂ = ∇ + ∇× ×
∂
H

H V B              (6) 

The Lorentz force is a force due to the combination of the 

electric and the magnetic force on a point charge due to 

electromagnetic fields. The total electromagnetic force is 

given by ×J B . From Ohms law, the total electric field J  is 

given by 

( )σ= + ×J E V B                           (7) 

Neglecting E , the total electric field is given by 

( )σ= ×J V B                             (8) 

The velocity is given by ˆˆ ˆcos 0 0
r

r zu θθ + +V = , the 

inclined variable magnetic field 

1
ˆˆ ˆ-Hsin r + Hcos +0zθβ βH =  and the induced magnetic field 

ˆˆ ˆ0rH r H zθθ= + +H . 

Therefore the total magnetic field B  is given by 

1= +B H H  hence B  is given by 

( ) ( ) ˆˆ ˆ
rH - Hsin r + H + Hcos +0zθ θβ βB =  

From equation (3.4.1.3) which simplifies to: 

( ) ˆcosr H +Hcos zu θσ β θ× =V B  

( )

ˆˆ ˆ

1 1
( )

0 0 cosr

r z

r
r r r z

H + Hcosu θ

θ

θ
σ β θ

  
∂ ∂ ∂=
∂ ∂ ∂

∇× ×V B  (9) 

( )
( )

1
ˆcos

1 ˆcos

r

r

u H + Hcos r
r

ru H + Hcos
r r

θ

θ

σ β θθ
σ β θ θ

  
      

 
  

∂ +
∂

∂
∂

=∇× ×V B
 (10) 

The conservation of energy equation derived from the first 

law of thermodynamics in the cylindrical coordinate system 

is given by the specific governing equations for the fluid flow 

that is purely radial and depends on r  and θ  with no change 

in the flow parameters along the z direction using the 

Boussinesq approximation, considering the Joule heating and 

the viscous dissipation with no chemical reaction are 

obtained as; 

( )( )1
, 0rru r

r r
θ∂ =

∂
                         (11) 
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( )

( )( )2

2 2

2 2

cos

ˆ :
1 1

r

rr r r r
r

u

r

H + Hcos

r
ruu pu u u u

u
t r r r r r r r

u

θ

θ

θ

σ β θ

ρ µθ θ

     
   +  
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−
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( )

( )( )( ) ( ) ( )
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1 1 2

r r

r r
r
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ruu u u u p u
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+
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                             (13) 

( )( )

2 2

2 2 2

22 2 2

2 2

2

1 1 T
K +

2 1
2 2 .

cos

p r

r r r r

r

udT T T T T
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u uu u u u
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H + Hcosu

θ

θ θ

θ

ρ
θ θ

µ
θ θ

σ β θ

 ∂ ∂ ∂ ∂ ∂ + + = + +  ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂        + + − − + +         ∂ ∂ ∂          
                                    (14) 

2 2

2 2 2

1 1
r

r r

C C C C C C
u u D

t r r r
θ θ θ

 
+ + + + 

 

∂ ∂ ∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂ ∂ ∂

                                                              (15) 

( )
2 2

2 2 2
ˆ :

1
sin sin

1 11r

e

r r r r

e

H
r

t
H Hcos

H H H u
r rrr r

θ θ β θµ
σ

σ θµ
 
 
 
 

∂
∂

+∂ ∂ ∂= + +∂∂ ∂
−                              (16) 

( ) ( )

2 2

2 2 2
ˆ :

1 1

cos cos

1

r

e

r

e

H

t

u

r

H H H

r rr r

u
H + Hcos H + Hcos

r

θ θ θ θ

θ θ

θ

σ
µ

σ θ

β θ β θ

µ
 
 
 
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 
 
  

∂ = +
∂

∂ ∂ ∂+ +∂∂ ∂

∂ +∂

                                    (17) 

Differentiating (12) with respect to θ̂ , expanding and Multiplying (13) by r̂  and differentiating with respect to r̂ and 

getting the difference in the two equations to obtain the equation of momentum in cylindrical form. 

( ) ( )

2 2 2

2

2

2 2

2 3

2 2 2 3 2

.

1 1
sin cos

1 1 2 2

r r r r r r

r

r

r
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u u
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  ∂
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=
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rr c

u
H - Hsin H +Hcos

r
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− 

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− + −

               (18) 

Equations (11), (13), (15), (16), (17) and (18) are the final 

set of the equations governing the flow. 

Unsteadiness Parameter 

The unsteadiness parameter is introduced to account for 

unsteadiness of the fluid flow. The unsteadiness parameter is 

a constant that represents the dimensionless measure of 

unsteadiness. 

According to [11, 13-15], the unsteadiness parameter is 

defined by 

1

m

m

d

dtr

δ δλ
ν −=                               (19) 
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where ( )tδ  is a time-dependent length scale, m  is a 

parameter related to the wedge angle and the radius of the 

wedge. 

Wedge angle Parameter 

The wedge angle parameter is an arbitrary constant m  

related to the wedge angle, [13]. From the studies by [15, 

10], the researchers concluded that if the total angle of the 

wedge is Ω , then the wedge angle parameter is given by the 

relation 

2

1

m

m
πΩ =

+
                                (20) 

But from the geometry in Figure 1, 2αΩ = , hence 

2
2

1

m

m
α π=

+
 

The relationship between α  and the m  related to the 

wedge angle is given by 

1

m

m
α π=

+
                               (21) 

4. Similarity Transformation 

The equations governing the flow are subjected to a 

similarity transformation to reduce them to ordinary 

differential equations before being solved numerically. 

From the studies by [11, 13, 14], among other researchers, 

the following non-dimensional transformations are used in 

the equation of continuity, momentum, energy, species 

concentration and induction. 

1 1

1 1
( , ) ( )

r m m

Q Q
u t f f

r r
θ θ

δ δ+ += − = −  (22) 

1

( )
m

w

T T

T T

ω θ
δ

∞
+

∞

−
=

− , 

1 1
( )w w

m m

T T T T
T T ω θ ω

δ δ
∞ ∞

∞ + +

− −
− = =        (23) 

1

( )
m

w

C C

C C

φ θ
δ

∞
+

∞

−
=

−
, 

1 1
( )w w

m m

C C C C
C C φ θ φ
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∞ + +

− −
− = =         (24) 

1 1

1 1
( , ) ( )

r m m

Q Q
H t H H

r r
θ θ

δ δ+ += − = −        (25) 

Using the unsteadiness parameter, the wedge angle 

parameter and the transformations on the governing 

equations; 

( )

( ) ( )

( ) ( )

2

1

1
2 22 2

3 3

*

1 1
2 5

sin cos

m

m
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rum d
r f Q f f f f f f f

dt

ru
r f H +Hcos r f H +Hcos
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δυ υυδ
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υ υ

+

+

∞ ∞

+ ′ ′ ′′ ′ ′′′− − + − −

′− − +

− −
− −

=

                               (26) 

Introducing the dimensionless numbers 

e

ru Q
R

r

θ

υ υ
= = , ( )22

aH r H + Hcosθ
σ β
µ

= , 
( )3

*

( )

w

r T

g r T T
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Q

β
υ
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= , 

( )3
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c

r C

g r C C
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β
υ

∞−
=  

in equation (26) 

( ) ( )
1

1 1

1

2 2
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1
1 2 5

sin cos

m

e em m

m
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                                        (27) 

Rearranging equation (27) 
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( )

1

1

1
2 2
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1
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sin cos 1

m

e e m
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+

+

+
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′ ′+ − − − +

=
                                       (28) 
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Equation (28) is the final equation of momentum 

Using the similarity transformations on equation (13) 

( )

( )

2 1 2 1

22 2 2

2 1 2 1 2 1 2 1

1

1 1
. K .

21 1 1 1 1
2 2 .

1
cos

w w

p wm m m
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m

u T T T Tm d
C T T

dt r r

u uQ Q Q Q
f f f f

r r rr r r r

Q
f H + Hcos

r

θ

θ θ

θ

δρ ω ω ω
δ δ δ

µ
δ δ δ δ

σ β θ
δ

∞ ∞
∞+ + +

+ + + +

+

− −+   ′ ′′− − + = +   
   

         ′ ′+ − + − − − + − +         
          

 − 
 

2


 



     (29) 

Introducing the unsteadiness parameter to the equation (29) 

( )

( ) ( )( )

1

1 2

22
2 1 2

2 2 1 2 2 1

2
22

2 1

1 K

24 1 1 1

1
cos

m

m

p

m

m m

p w

m

p w

um
r

r C r

u uQ
f f f

rQr C T T r Q r

Q
f H + Hcos

C r T T

θ

θ θ

θ

υλω ω ω
δ ρ

µ δ
ρ δ δ

σ β θ
ρ δ

−
+

+
+ +

∞

+
∞

+ ′ ′′− + = +

 
′ ′+ + + + −  

−

                                           (30) 

Introducing the dimensionless numbers 

K

p

r

C
P

µ
= , 

.
e

r u
R θ

υ
= , 

( )
2

2c

p w

Q
E

r C T T∞

=
−

, 
( )

( )

2

p w

H + Hcos
J

C T T

θσ β
ρ υ ∞

=
−

 

Equation (30) becomes 

( )

2

1 2 1 2

1 2 2 2 1 2 2 1

2
2 2

2 1

21 1 1 4 1 1 1

1
cos

m m

e cm m m

r

m

u um
r R E f f f

rQr r P r Q r

Q
J f

r

θ θλω ω ω δ
δ δ δ

θ
δ

− +
+ + +

+

 + ′ ′′ ′ ′− + = + + + + + 
                     (31) 

Simplifying and rearranging equation (31), the energy equation is obtained as; 

( )

2 2

1 2 1 2

1 1 2 1

2 2 2

1

21 1 1
. 4

1
cos

m m

r r e r cm m m

r m

r u rum
r P P R P E f f f

QQ

Q P J f

θ θω λω ω δ
δ δ δ

θ
δ

+ +
+ + +

+

 +′′ ′ ′ ′= − + − + + + 
 

−

                         (32) 

Using the similarity transformation on equation (15) 

( ) ( ) ( ) ( )
2 1 1 2 1

1 1 1 1
0 0 0w w

wm m m m

C C C Cm d Q
C C f u

dt r r r
Dθ

δ φ φ φ
δ δ δ δ

∞ ∞
∞+ + + +

− −+    ′ ′′− − + − + + +   
   

=                        (33) 

Simplifying equation (33) 

( )
2 1 2 1

1 1w w

wm m m

C C C Cm d
C C u

dt r
Dθ

δ φ φ φ
δ δ δ

∞ ∞
∞+ + +

− −+  ′ ′′− − +  
 

=                                                (34) 

Introducing the dimensionless numbers 

.
e

r u
R θ

υ
= , cS

D

υ=  
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1

e1

1
R 0

1m

m

c

m
r r

S
λφ φ φ

δ
+

+

+ ′ ′′− + =−                                                                    (35) 

Rearranging equation (35), the equation of concentration after the transformation becomes; 

1

e 1

1
R . .m

c cm

m
r S r Sφ φ λ φ

δ
+

+

+′′ ′= −                                                                              (36) 

Using the similarity transformations on equation (16) and (17). Equation (17) reduces to zero while equation (16) becomes 

( )

2 3

2 1

3 1 3 1 1

1

1
sin

2 1 1 11
m

m

e

m m m
e

m Q d
H

r dt

Q
f

r
H Hcos

Q Q Q
H H H

rr r

θ

δ
δ

θ
δ

σ βµ

σ δ δ δµ+

+

+ + +
 +−  
 
 

+

= − + − ′′ +
                               (37) 

Introducing the unsteadiness parameter and the dimensionless parameters 

e

ru
R θ

υ
= , m eR ruθσµ= , ( )

1
2

a

e

H r H Hcosθ
σ
µ

β 
=  

 
+ , ( )e

aH r H Hcosθ
µ
σ

β  = 
 

+  

Equation (37) reduces to 

( )2

1

1
sin

m e e

am

m e

m
r H H fH H

R
R

µλ θ
σδ

σ
µ υ

+
+

+  − −  
 

= + ′′ +                                          (38) 

Simplifying equation (38) 

( )2

1

1
sin

1m e

am

em

m
r H H fH H

R
R

σλ θ
µδ υ

+
+

 +− −  
 

= + ′′ +                                           (39) 

Rearranging equation (39), the final induction equation after the transformation is obtained as; 

2

1

1
sin

1m m m

am

e e e

R Rm
H r H H H f

R R

σλ θ
µδ υ

+
+

 +′′ −  
 

= +                                              (40) 

Equations (28), (32), (36) and (40) are the final set of ODEs of higher-order governing the fluid flow. 

The boundary conditions are transformed using the similarity transforms (22) to (25) to obtain 

For 

0θ = , 
1

(0)
mu r

f
Q

δ +∞= − , 0uθ = , (0) 0w = , (0) 0φ =  

For 

θ α= ± , ( ) 0f α± = , 0u uθ = , 1( ) mw α δ +± = , 1(0) mφ δ +=                                                   (41) 

5. Reduction of Order of ODEs 

The equations governing the flow (28), (32), (36) and (40) are reduced to first-order ODEs and solved by the collocation 

method. By letting 

1y f= , 2y f ′= , 3y f ′′= , 4y ω= , 5y ω′= , 6y φ= , 7y φ′= , 8y H= , 9y H′=                                (42) 

Differentiating (42) 
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1 2y y′ =                                                                                                (43) 

2 3y y′ =                                                                                                (44) 

( )

( )

1

3 3 1 1 2 1 21

1
2 2

1 2 ( ) ( ) 21

1
2 5

sin cos 1 ( )

m

e e m

m

a a r T r C m

ru
y f R y y rR y y y y

Q

H y H y G G m y A
r

θδ
δ

δθ θ ω φ λ

+

+

+

+

′ ′′′= + + + − − −

+ − − − +

=
                            (45) 

4 5y y′ =                                                                                         (46) 

( )

2 2

1 2 1 2

5 4 5 1 2 21 1 2 1

2 2 2

11

21 1 1
. 4

1
cos ( )

m m

r r e r cm m m

r m

r u rum
y r P y P R y P E y y y

QQ

Q P J y B

θ θω λ δ
δ δ δ

θ
δ

+ +
+ + +

+

 +′ ′′= = − + − + + + 
 

−

                         (47) 

6 7y y′ =                                                                                     (48) 

1

7 e 7 61

1
R . . ( )m

c cm

m
y r S y r S y Cφ λ

δ
+

+

+′ ′′= = −                                                       (49) 

8 9y y′ =                                                                                    (50) 

2

9 8 8 11

1
sin ( )

1m m m

am

e e e

R Rm
y H r y y H y D

R R

σλ θ
µδ υ

+
+

 +′ ′′= −  
 

= +                            (51) 

Equations (43) to (51) become a system of equations of the 

general form 

( , )y F yθ′ =                               (52) 

Where 

1

2

3

4

5

6

7

8

9

y

y

y

y

y y

y

y

y

y

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

and 

2

3

5

7

9

y

y

A

y

F B

y

C

y

D

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

                                       (53) 

The system of equations (53) is solved by the collocation 

method using the inbuilt MATLAB function bvp4c that 

implements the collocation algorithm together with the 

implicit Runge-Kutta method. 

6. Results and Discussion 

The research findings and the discussions are presented 

with the graphical illustrations of the effects of various 

parameters on the unsteady magnetohydrodynamic Jeffrey-

Hamel flow in the presence of a variable inclined magnetic 

field with suction and injection. 
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Figure 2. Velocity profiles for different values of the suction parameter. 

 

Figure 3. Temperature profiles for different values of the suction parameter. 

 

Figure 4. Magnetic Induction profiles for different values of the suction 

parameter. 

 

Figure 5. Velocity profiles for different values of the injection parameter. 

 

Figure 6. Temperature profiles for different values of the injection 

parameter. 

 

Figure 7. Velocity profiles for different values of the injection parameter. 
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Figure 8. Magnetic Induction profiles for different values of the Hartmann 

number. 

 

Figure 9. Temperature profiles for different values of the Hartmann number. 

 

Figure 10. Velocity profiles for different values of the Hartmann number. 

 

Figure 11. Magnetic Induction profiles for different values of the Joule 

parameter. 

 

Figure 12. Velocity profiles for different values of the unsteadiness 

parameter. 

 

Figure 13. Magnetic induction profiles for different values of the 

unsteadiness parameter. 
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Figure 14. Velocity profiles for different values of the wedge angle. 

 

Figure 15. Magnetic induction profiles for different values of the wedge 

angle. 

From Figure 2, the graph of the velocity profiles while 

varying the suction parameter, the velocity increases with the 

increase in the suction parameter. Suction results in the 

thinning of the momentum boundary layer of the fluid flow, 

decrease in pressure which leads to increase the velocities. 

From Figure 3, the graph of the temperature profiles while 

varying the suction parameter, the temperature increases with 

the increase in the suction parameter. This is due to the 

increase in the velocities as a result of the suction which 

leads to an increase in the kinetic energy which is then 

converted into thermal energy hence the increase in 

temperature. 

From Figure 4, the magnetic induction increases with the 

increase in the suction parameter. With the increase in the 

suction parameter, the velocity of the fluid increases hence an 

increase in the interaction of the magnetic field and the fluid 

resulting in increased magnetic induction. 

From Figure 5, the velocity decreases with the increase in 

the injection parameter. Injection results in the thickening of 

the boundary layer hence a decrease in the velocity profiles. 

Injection increases the pressure in the fluid and with constant 

discharge, the velocity decreases. 

From Figure 6, the temperature decreases with the increase 

in the injection parameter. Injection leads to reduced 

velocities, the conversion of kinetic energy into thermal 

energy is also reduced hence a reduction in the temperature 

of the fluid. 

From Figure 7, magnetic induction decreases with the 

increase in the injection parameter. As the injection 

parameter is increased, the velocity of the fluid decreases 

hence a decrease in the rate of interaction between the 

magnetic fluid and the inclined magnetic field which leads to 

reduced magnetic induction 

From Figure 8, the magnetic induction increases with the 

increase in the Hartmann number. The increase in the 

Hartmann leads to the decrease in the viscous forces hence 

increase in the velocities fluid molecules thus increased 

magnetic induction. 

From Figure 9, the temperature increases with the increase 

in the Hartmann number. As the Hartmann number increases, 

the effect of the viscous drag reduces and since viscosity and 

temperature and inversely, related, the temperature increases. 

From Figure 10, the velocity of the fluid increases with the 

increase in the Hartmann number. As the Hartmann number 

increases, the effect of the viscous drug that opposes motion 

reduces hence increase in the velocities. 

From Figure 11, the magnetic induction increases with the 

increases in the Joules heating parameter. As heating 

parameter increases the amount of current through the fluid 

increases since from the joules first law, the power of heating 

generated by an electric conductor is proportional to the 

product of its resistance and the square of its current. With 

the increase in the electric current applied, there is an 

increase in magnetic induction. 

From Figure 12, the velocity decreases with increase in the 

unsteadiness parameter. The unsteadiness parameter 

increases, there is the thickening of the boundary layer due to 

no-slip condition and viscous drag which results in reduced 

velocities. 

From Figure 13, the Magnetic induction reduces with the 

increase in the unsteadiness parameter. As the unsteadiness 

parameter increases, the velocity of the fluid is reduced due 

to the thickening of the boundary layer and the effect of the 

viscous drag hence reduced magnetic induction. 

From Figure 14, the velocity increases with the decrease in 

the wedge angle. Using the different values of the wedge 

angle parameter m , i.e. 

01
0.5, 60

2 3
m

πα= = = = , 01
0.33..., 45

3 4
m

πα= = = = ,

01
0.25, 36

4 5
m

πα= = = = , 01
0.2, 30

5 6
m

πα= = = =  

As the wedge angle α  decreases, the area of the wedge 

decreases and with a constant discharge Q , Q AV= , the 

velocity increases. As the area decreases, pressure increases 

hence an increase in the force in the fluid resulting in 



12 Edward Richard Onyango et al.:  Unsteady Jeffrey-Hamel Flow in the Presence of Oblique Magnetic  

Field with Suction and Injection 

increased velocity. 

From Figure 15, as the wedge angle α  decreases, the 

magnetic induction increases. As the wedge angle α  

decreases, the area of the wedge decreases and with constant 

discharge, the velocity of the fluid increases and since 

magnetic induction and the velocity of the fluid increases and 

since magnetic induction and velocity of the fluid is directly 

proportional, the magnetic induction increases due to the 

increase in velocity. 

7. Conclusion 

The unsteady Jeffrey-Hamel flow in the presence of the 

inclined magnetic field with suction and injection has been 

investigated and the effect of various parameters discussed. 

The velocity and the magnetic induction profiles start at a 

maximum which is at the centerline velocity and decrease to 

zero which is the wall velocity due to the no-slip condition. 

The effect of varying various fluid flow variables is more 

pronounced between the center line and the walls of the 

divergent channel. Increase in the suction parameter leads to 

an increase in the velocity, temperature, and magnetic 

induction profiles while an increase in the injection 

parameter results in a decrease of the velocity, temperature, 

and magnetic induction profiles. The temperature and the 

magnetic induction profiles increase with the increase in the 

Hartmann number and the joule heating parameter while the 

velocity and the magnetic induction profiles decrease with 

the increase in time through the increase in the unsteadiness 

parameter due to the thickening of the boundary layer. The 

wedge angle plays a significant role since its decrease leads 

to reduced velocities and reduced magnetic induction as the 

effect of the boundary layer becomes more pronounced in the 

flow region. 

Nomenclature 

ρ  The density of the fluid 

r  The radius of the channel 

θ  The angle of the channel 

α  
The angle from the centerline to the wall of the 

channel 

H  Inclined Magnetic field 

,ru uθ  Velocity along r ,θ  direction 

β  The angle of inclination of the magnetic field 

T  Temperature 

t  Time 

Φ  Viscous dissipation function 

H  Induced Magnetic field 

B  Total magnetic field 
µ  Dynamic viscosity 

K  Thermal diffusivity 
σ  Electrical conductivity 

Pr  Prandtl number 

Re  Reynold number 

mR  Reynold magnetic number 

Ec  Eckert number 

J  Joule heating parameter 

Ha  Hartmann number 

( )r C
G  Grashof Concentration number 

( )r T
G  Grashof Temperature number 

 

References 

[1] Jeffery, G. B. "L. The two-dimensional steady motion of a 
viscous fluid." The London, Edinburgh, and Dublin 
Philosophical Magazine and Journal of Science 29, no. 172 
(1915): 455-465. 

[2] Hamel, Georg. "Spiralförmige Bewegungen zäher 
Flüssigkeiten." Jahresbericht der Deutschen mathematiker-
Vereinigung 25 (1917): 34-60. 

[3] W. I. Axford, “The magnetohydrodynamic Jeffrey-Hamel 
problem for a weakly conducting fluid,” The Quarterly 
Journal of Mechanics and Applied Mathematics, vol. 14, pp. 
335–351, 1961. 

[4] G. Domairry and A. Aziz, “Approximate analysis of MHD 
squeeze flow between two parallel disks with suction or 
injection by a homotopy perturbation method,” Mathematical 
Problems in Engineering, vol. 2009, Article ID 603916, 19 
pages, 2009. 

[5] Imani, A. A., Rostamian, Y., Ganji, D. D., & Rokni, H. B. 
(2012). Analytical investigation of Jeffery-Hamel flows with 
high magnetic field and nanoparticle by rvim. 

[6] Asadullah, M., Khan, U., Manzoor, R., Ahmed, N., & Mohyud-
Din, S. T. (2013). MHD flow of a Jeffery fluid in converging and 
diverging channels. Int. J. Mod. Math. Sci, 6 (2), 92-106. 

[7] Khan, U., Ahmed, N., Zaidi, Z. A., Jan, S. U., & Mohyud-Din, 
S. T. (2013). On Jeffery–Hamel flows. Int J Mod Math Sci, 7 
(3), 236-247. 

[8] Sheikholeslami, M., Mollabasi, H., & Ganji, D. D. (2015). 
Analytical investigation of MHD Jeffery–Hamel nanofluid 
flow in non-parallel walls. International Journal of 
Nanoscience and Nanotechnology, 11 (4), 241-248. 

[9] Zubair Akbar, M., Ashraf, M., Farooq Iqbal, M., & Ali, K. 
(2016). Heat and mass transfer analysis of unsteady MHD 
nanofluid flow through a channel with moving porous walls 
and medium. AIP Advances, 6 (4), 045222. 

[10] Alam, M. S., Haque, M. M., & Uddin, M. J. (2016). The 
convective flow of nanofluid along with a permeable 
stretching/shrinking wedge with second-order slip using 
Buongiorno’s mathematical model. International Journal of 
Advanced in Applied Mathematics and Mechanics, 3 (3), 79-
91. 

[11] Nagler, J. (2017). Jeffery-Hamel flow of non-Newtonian fluid 
with nonlinear viscosity and wall friction. Applied 
Mathematics and Mechanics, 38 (6), 815-830. 

[12] Ochieng, F. O., Kinyanjui, M. N., & Kimathi, M. E. (2018). 
Hydromagnetic Jeffery-Hamel Unsteady Flow of a Dissipative 
Non-Newtonian Fluid with Nonlinear Viscosity and Skin 
Friction. Global Journal of Pure and Applied Mathematics, 14 
(8), 1101-1119. 



 Applied and Computational Mathematics 2020; 9(1): 1-13 13 

 

[13] Sattar, M. A. (2013). Derivation of the similarity equation of 
the 2-D unsteady boundary layer equations and the 
corresponding similarity conditions. American Journal of 
Fluid Dynamics, 3 (5), 135. 

[14] Alam, M. S., & Huda, M. N. (2013). A new approach for local 
similarity solutions of an unsteady hydromagnetic free 
convective heat transfer flow along a permeable flat surface. 

International Journal of Advances in Applied Mathematics 
and Mechanics, 1 (2), 39-52. 

[15] Alam, M. D. S., Khan, M. A. H., & Alim, M. A. (2016). 
Magnetohydrodynamic Stability of Jeffery-Hamel Flow using 
Different Nanoparticles. Journal of Applied Fluid Mechanics, 
9 (2). 

 
 


